
Nomenclature

A amplitude of Tollmien-Schlichting wave

am;k Landau coe�cient governing growth of Tollmien-Schlichting wave

B amplitude of Dean vortex

bm;k Landau coe�cient governing growth of Dean vortex

f nondimensional steady-state streamwise-velocity distribution

gm;k Landau coe�cient governing phase of Tollmien-Schlichting wave

h channel half-width

hm;k Landau coe�cient governing phase of Dean vortex

i imaginary part of complex number,
p�1

Ln;l linear operator

M \mass" matrix

P sum of base and perturbation pressure

p perturbation pressure

q perturbation velocity-pressure vector

R Reynolds number, U
�

h�=��

Rs right-hand-side vector

r radial (wall normal) coordinate

t time

U sum of base and perturbation velocity

U vector sum of base and perturbation velocity

U
�

bulk velocity{volumetric ow rate divided by cross-sectional area

u perturbation velocity

z axial (spanwise) coordinate

@ azimuthal wave number

� axial wave number

 phase of Tollmien-Schlichting wave

� phase of Dean vortex

� curvature parameter (ratio of inner to outer radii)

� azimuthal (streamwise) coordinate

�s complex Landau coe�cient from equation system s

� curvature parameter, 1� �

� kinematic viscosity

� density

�0 portion of nonlinear correction proportional to linear solution

�1 portion of nonlinear correction linearly independent of linear solution
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!r radial component of �1

r gradient operator

Subscripts:

c center

i inner

k nonlinear correction due to vortex

l multiple of spanwise wave number of vortex

m nonlinear correction due to streamwise wave

n multiple of streamwise wave number

o outer

r radial (wall normal)

s equation system number

z axial (spanwise)

� azimuthal (streamwise)

Superscripts:

k nonlinear correction due to vortex

l multiple of spanwise wave number of vortex

m nonlinear correction due to streamwise wave

n multiple of streamwise wave number

� dimensional quantity

Abbreviations:

DHZ Daudpota, Hall, and Zang (see ref. 10)

DNS direct numerical simulation

TS Tollmien-Schlichting
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Abstract

A weakly nonlinear theory is developed to study the interaction of
Tollmien-Schlichting (TS) waves and Dean vortices in curved channel ow.
The predictions obtained from the theory agree well with results obtained
from direct numerical simulations of curved channel ow, especially for low-
amplitude disturbances. Some discrepancies in the results of a previous theory
with direct numerical simulations are resolved.

1. Introduction

Interactions between Tollmien-Schlichting (TS) waves and streamwise vortices can be an impor-

tant part of the transition process (ref. 1). Kim and Moser (ref. 2) and Singer, Reed, and Ferziger

(ref. 3) showed that weak streamwise vortices can alter the mode by which the ow undergoes tran-

sition. Nayfeh and Al-Maaitah (ref. 4) used Floquet theory to study the inuence of G�ortler vortices

on the growth of oblique TS waves. They found that there are two components to the solution; one

is stabilized and the other is destabilized by the presence of the vortices. Malik and Hussaini (ref. 5)

studied the interactions of G�ortler vortices and TS waves via direct numerical simulations. They

found qualitative agreement with the results of Nayfeh and Al-Maaitah (ref. 4).

A series of studies on the interactions of TS waves and streamwise vortices in curved channel

ows at asymptotically high Reynolds number have been made (refs. 6{9). Daudpota, Hall, and

Zang (ref. 10) (hereinafter referred to as DHZ) developed a weakly nonlinear interaction theory to

study the interaction at a �nite Reynolds number. They employed a multiple-scale version of the

approach developed by Stuart (ref. 11) and Watson (ref. 12) to derive two coupled Landau equations

for the perturbation amplitudes of the streamwise vortices (called Dean vortices in curved channel

ow) and TS waves. A comparison of their theoretical predictions with the results of direct numerical

simulation (ref. 13) suggests that their results are in error with respect to the inuence of the TS

wave on the Dean vortex. The resolution of this discrepancy is a major motivation for undertaking

this work.

In section 2 we present a slightly di�erent formulation (see refs. 14 and 15 by Herbert) of a weakly

nonlinear interaction theory and describe how the resulting equations are solved. We also include

suggestions to guide the intelligent use of the theory. In section 3 we compare the results from the

current theory with results from DHZ. In addition, direct numerical simulation is used to verify that

the current theory correctly predicts the overall behavior of the ow. Finally, in section 4 we draw

conclusions.

The authors would like to thank Thorwald Herbert of Ohio State University, Q. Isa Daudpota,

formerly NRC at the Langley Research Center, and Philip Hall of the University of Manchester, UK,

for many useful discussions.

2. Mathematical Formulation

2.1. The Basic Equations

The incompressible Navier-Stokes equations in cylindrical coordinates ( r�; �; z�) are written as
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and �� and �� represent the constant density and kinematic viscosity, respectively. The asterisks
indicate dimensional quantities. The geometry of the problem of azimuthal ow between in�nite
concentric walls of outer radius r�o and inner radius r�

i
is illustrated in �gure 1. The wall boundary

conditions require that
U�

r = U�

�
= U�

z = 0 (r� = r�i ; r
�

o) (7)
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Mean flow

Figure 1. Curved channel ow geometry.

A solution to the equations gives (U�
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The quantity r�c = (r�o + r�
i
)=2 is the centerline radius, h� = (r�o � r�

i
)=2 is the channel half-width,

and the ratio � = r�
i
=r�o describes the channel curvature.

We nondimensionalize all spatial coordinates with the channel half-width, velocities with the bulk

velocity, and pressure with ��U
�2
. The temporal scale is h�=U

�

. The Reynolds number is de�ned as

R =
U
�

h�

��

The nondimensional equations are easily obtained from the dimensional ones by replacing all starred
quantities with their corresponding nondimensional unstarred ones and noting that � = 1, h = 1, and
� = 1=R. The expression 1�� appears often below and is denoted by �. When � = �c = 2:179�10�5,
the minimum Reynolds number for instability of TS waves is the same as that for Dean vortices
(ref. 16).

We follow closely the perturbation method introduced by Herbert (refs. 14 and 15), extending it
to the case of interacting disturbances. The steady solution is perturbed such that
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where ur, u�, uz, and p are disturbance quantities. Where appropriate, the disturbance vector will
be written as

q =

0
BBBB@

ur

u�

uz

p

1
CCCCA (13)

Substituting the perturbations into the nondimensionalized Navier-Stokes equations, subtracting the
steady-ow component, and rearranging gives
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We are considering here the idealized problem in which the solution is periodic in the azimuthal
(streamwise) and axial (spanwise) directions and the solution evolves in time. In addition, the mean
pressure gradient is kept constant.

2.2. Fourier Expansions

The linearized disturbance equations are obtained by setting the right-hand sides of equa-
tions (14){(17) equal to zero. A solution to the equations for a two-dimensional (2D) TS wave
can be written as

q = ~q1;0(r; t) e
i[@��(t)] (20)

Here @ is real and represents the azimuthal wave number, whereas (t) is a real function de�ning
the phase. Any growth or decay of the linearized TS wave is expressed in terms of the amplitude
such that

~q1;0(r; t) = A(t) q̂1;0;0;0(r) (21)

where
dA

dt
= a0;0A (22)

and a0;0 is the linear growth rate. Quantities of the form q̂n;m;l;k are used frequently throughout the
report. The n and l indices refer to multiples of the TS and/or Dean wave numbers, whereas the m

and k indices refer to the order of the nonlinear corrections. For instance, q̂1;0;0;0 is the zeroth-order
correction of the primary TS wave number, in other words, the TS linear eigenfunction. We de�ne
the amplitude as

A(t) =
j~u

1;0
r (rc; t)j

jû
1;0;0;0
r (rc)j

(23)

where rc is the channel centerline. In general, the amplitude represents the ratio of the magnitude of
any perturbation quantity and the magnitude of the corresponding linear eigenfunction quantity. The
amplitude de�nition can be varied independently of the normalization of the linear eigenfunction.
This is somewhat more general than that done by Herbert (refs. 14 and 15). The importance of
this generalization will be made clear later when we discuss alternative de�nitions of the amplitude.
Here, we normalize the linear eigenfunction by taking

û1;0;0;0
r (rc) = 1 (24)

In a similar manner, one can write the solution for the primary Dean vortex mode as

q = ~q0;1(r; t) e
i[�z��(t)] (25)

where � is the real axial wave number and �(t) = 0 indicates that the linear Dean disturbance is
stationary. We also write

~q0;1(r; t) = B(t) q̂0;0;1;0(r) (26)

where
dB

dt
= b0;0B (27)

The amplitude is de�ned such that

B(t) =
j~u

0;1
r (rc; t)j

jû
0;0;1;0
r (rc)j

(28)

and the eigenfunction is normalized so that

û0;0;1;0
r (rc) = 1 (29)
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When the nonlinear terms (the right-hand sides of eqs. (14){(17)) are included, the disturbances
can interact with themselves, with the mean ow, with each other, and with all the relevant
complex conjugates. This results in the generation of harmonics, mean-ow distortions, and various
corrections to the fundamental disturbances. Hence, it is natural to expand the perturbation
variables in the double Fourier series:

q =

1X

n=�1

1X

l=�1

~qn;l(r; t) e
in[@��(t)]eil[�z��(t)] (30)

2.3. Amplitude Expansion

The nonlinear partial di�erential equations obtained by substituting equation (30) into equa-
tions (14){(17) are coupled and di�cult to solve e�ciently. We seek a solution by expanding ~qn;l
in the amplitude parameters A(t) and B(t) about the linear solutions given by equations (20) and
(25). The solutions will reect the deviations from linear behavior for �nite, but su�ciently small,
amplitudes A and B. In this context, all harmonics of the primary disturbances are considered
to be forced. Since the linear TS and Dean solutions are O(A) and O(B), respectively, their �rst
harmonics and cross terms will be O(A2), O(B2), and O(AB). Higher order harmonics and cross

terms will be O(AnBl); hence, it is reasonable to let

~qn;l(r; t) = AjnjBjlj ~~qn;l(r; t) (31)

where all double tilde terms are O(1) except for those with n = l = 0. Heuristically, one can see that
the exception with the n = l = 0 term comes about from the fact that the lowest order mean-ow
distortions are generated from the product of either TS or Dean fundamental disturbances with
their respective complex conjugates. The fundamental disturbances are O(A) and O(B); hence, the
product terms that generate n = l = 0 are O(A2) and O(B2), respectively.

Substitution of the representation in equation (31) into equation (30) yields

q =

1X

n=�1

1X

l=�1

~~qn;l(r; t) A
jnj(t) Bjlj(t) ein[@��(t)]eil[�z��(t)] (32)

We now expand the double tilde representations into sums that are products of ascending powers of
the amplitude functions with coe�cients which are strictly functions of the radial coordinate. In the
limit, as A ! 0 and B ! 0, the solutions tend toward the linear results. Only even powers of A and
B are needed (Drazin and Reid in ref. 17) because of the invariance of the original equations and
boundary conditions with respect to arbitrary translation in the streamwise and spanwise directions
and the assumption of periodicity of the solutions in these directions. Hence,

~~qn;l(r; t) =

1X

m=0

1X

k=0

q̂n;m;l;k(r) A
2m(t) B2k(t) (33)

By substitution into equation (32) one obtains the full representation of the perturbation vector:

q =

1X

n=�1

1X

m=0

1X

l=�1

1X

k=0

q̂n;m;l;kA
2m+jnjB2k+jljein(@��)eil(�z��) (34)
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In order that the wall boundary conditions be satis�ed at all orders of approximation, we require
that

0
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û
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1
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0

0

1
CA (35)

at r = ri; ro for all combinations of n, m, l, and k. The case n = m = l = k = 0 represents the
basic ow which has already been considered so that q̂

0;0;0;0= 0.

Consistent expansions of the time derivatives _A=A, _B=B, _, and _� are in powers of A2 and B2

so that

_A

A
=

1X
m=0

1X

k=0

am;kA
2mB2k (36)

_B

B
=

1X
m=0

1X

k=0

bm;kA
2mB2k (37)

_ =

1X
m=0

1X

k=0

gm;kA
2mB2k (38)

_� =

1X
m=0

1X

k=0

hm;kA
2mB2k (39)

Equations (36) and (37) are the coupled Landau equations that describe the growth of the
disturbances. The purpose of the remainder of this section is to determine the Landau coe�cients
am;k and bm;k.

2.4. Solution Method

The solution expansions in equations (32){(39) are substituted into the perturbation equa-
tions (14){(17). All terms with common exponential factors are grouped together. The simplest
nonlinear theory is obtained by considering only those terms with Fourier exponents limited by

�1 � n and l � 2

With this restriction, it is only appropriate to consider terms in the amplitude expansions (eq. (33))
with m = 0; 1 and k = 0; 1. Larger values of m or k give higher order contributions that should
not be considered at this degree of truncation. In each group with common exponential factors, all
terms with common powers of A and B are collected. MACSYMA (ref. 18) was used to substantially
reduce the chance of error in obtaining the �nal equations. Twelve systems of equations, indexed by
s, remain to be solved numerically. A description of each of the systems is summari zed in table 1.
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Table 1. Summary of Equation Systems

Equation system

number (s) Order n m l k Description

1 A 1 0 0 0 Linear TS wave

2 B 0 0 1 0 Linear Dean vortex

3 A
2 0 1 0 0 Mean-ow distortion from TS

4 B2 0 0 0 1 Mean-ow distortion from Dean

5 A
2 2 0 0 0 TS harmonic

6 B
2 0 0 2 0 Dean harmonic

7 AB 1 0 1 0 TS|Dean cross harmonic

8 AB 1 0 �1 0 TS|Dean cross harmonic

9 A
3 1 1 0 0 Self-correction to TS

10 B
3 0 0 1 1 Self-correction to Dean

11 AB
2 1 0 0 1 Dean correction to TS

12 A
2
B 0 1 1 0 TS correction to Dean

The �rst two equation systems (s = 1 and 2) are eigenvalue problems of the form

Ln;lq̂n;0;l;0 =
�
n
�
a0;0� ig0;0

�
+ l

�
b0;0� ih0;0

��
Mq̂n;0;l;0 (40)

where

M =

0
BBBB@

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 0

1
CCCCA

(41)

The elements of the operator Ln;l are given in appendix A. The solution of the eigenvalue problem
determines the most unstable eigenvalues, a0;0 � ig0;0 and b0;0 � ih0;0. The normalizations in
equations (24) and (29) are used to uniquely de�ne the eigenvectors q̂1;0;0;0(r) and q̂0;0;1;0(r). The
eigenvalues are the zeroth-order Landau coe�cients.

Equation systems 3 and 4 (i.e., s = 3 and 4) represent the mean-ow distortion caused by the
TS and Dean disturbances, respectively. For this case, n = l = 0 and the operator Ln;l is greatly
simpli�ed. We consider the case where either m or k equals 1, while the other equals 0. The
mean pressure gradient is constant; hence, p̂0;1;0;0 = p̂0;0;0;1 = 0. Analysis indicates that only the
azimuthal velocity component of the mean-ow distortions is nonzero. Its equation is
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û
0;m;0;k
�

�

1

R

d2

dr2
û
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+ û�m;0;�k;0
r û
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In similar contexts, Davey and Nguyen (ref. 19) and Herbert (ref. 15) point to an important
restriction to the theory that results from equation (42). When either of the linear growth rates a0;0
or b0;0 are negative, the associated homogeneous problem with homogeneous boundary conditions
can be recast as a Bessel equation through a change of variables. Hence, solutions of the homogeneous
problem can exist and can contribute an arbitrarily large component to the solution of the forced
problem. To prevent this di�culty we require both a0;0 and b0;0 to be nonnegative. This restricts
the application of the theory to those regimes where both the TS and Dean disturbances are linearly
unstable.

The equation systems 5{12 (i.e., s = 5{12) are all of the form

�
Ln;l �

�
2ma0;0+ jnja0;0� ing0;0+ 2kb0;0+ jljb0;0� ilh0;0

�
M

�
q̂n;m;l;k= Rs (43)

where Rs is the right-hand-side vector of the s equation system. The right-hand-side vectors consist
of nonlinear combinations of the solutions obtained at lower order. The elements of the right-hand-
side vectors Rs are given explicitly in appendix B.

Equation systems 5{8 (i.e., s = 5{8) for the various harmonics require numerically solving a
sequence of linear, ordinary di�erential equation systems. In the case of Dean disturbances, we
found that it is possible that the harmonic of an unstable mode is also in the unstable regime. When
this happens, it violates the assumption that all the higher harmonics are forced by the primary
disturbances. Although numerical results can be obtained for such cases, the results are meaningless
since the harmonic can grow on its own and is not simply forced by the fundamental. We found that
this circumstance does not occur for the TS waves.

Equation systems 9, 10, 11, and 12 (i.e., s = 9, 10, 11, and 12) de�ne the corrections to the
fundamental TS and Dean disturbances and allow us to calculate the Landau coe�cients a1;0, b0;1,
a0;1, and b1;0, respectively. It is in the solution of these terms that the method developed by Herbert
(refs. 14 and 15) di�ers from the standard approach developed by Stuart (ref. 11) and Watson
(ref. 12).

The right-hand-side vectors Rs for s = 9{12 can be rewritten as

Rs = R
0

s + �sMq̂n;0;l;0 (44)

where

�9 = a1;0� ig1;0

�10 = b0;1� ih0;1

�11 = a0;1� ig0;1

�12 = b1;0� ih1;0

The correspondence between the index s and the indices n, m, l, and k is given in table 1. The
solution vectors q̂n;m;l;k for these equation systems are the sums of particular solution vectors ; hence,

q̂n;m;l;k(r) = �s �0n;m;l;k(r) + �1n;m;l;k(r) (45)
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where
�0n;m;l;k(ri) = �0n;m;l;k(ro) = �1n;m;l;k(ri) = �1n;m;l;k(ro) = 0 (46)

Substitution of equations (44) and (45) into equation (43) leads to

�
Ln;l�

�
2ma0;0+ n(a0;0� ig0;0) + 2kb0;0+ l(b0;0� ih0;0)

�
M

	
�s�

0
n;m;l;k= �sMq̂n;0;l;0 (47)

and �
Ln;l�

�
2ma0;0+ n(a0;0� ig0;0) + 2kb0;0+ l(b0;0� ih0;0)

�
M

	
�1n;m;l;k= R0s (48)

Recognizing that �
Ln;l�

�
n(a0;0� ig0;0) + l(b0;0� ih0;0)

�
M

	
q̂n;0;l;0= 0 (49)

when (n = 1, l = 0) or (n = 0, l = 1), one �nds by inspection of equation (47) that

�

�
2ma0;0+ 2kb0;0

�
�0n;m;l;k= q̂n;0;l;0 (50)

or

�0n;m;l;k= �
q̂n;0;l;0

2ma0;0+ 2kb0;0
(51)

It is straightforward to solve equation (48) numerically to obtain �1n;m;l;k. Substituting equation (51)

into equation (45) gives

q̂n;m;l;k(r) = �1n;m;l;k(r)�
�s q̂n;0;l;0(r)

2ma0;0+ 2kb0;0
(52)

In order to determine the Landau coe�cients �s, we use the amplitude de�nitions in equa-
tions (23) and (28). Together with the expansions in equations (31){(34) they require that

j~u
1;0
r (rc; t)j

jû
1;0;0;0
r (rc)j

=
j

P
1

m=0

P
1

k=0A
2m+1B2k û

1;m;0;k
r (rc)j

jû
1;0;0;0
r (rc)j

= A(t) (53)

and
j~u
0;1
r (rc; t)j

jû
0;0;1;0
r (rc)j

=
j

P
1

m=0

P
1

k=0A
2mB2k+1 û

0;m;1;k
r (rc)j

jû
0;0;1;0
r (rc)j

= B(t) (54)

For these to be correct at all orders of approximation,

û1;m;0;k
r (rc) = 0 (55)

for all m;k > 0 and

û0;m;1;k
r (rc) = 0 (56)

for all m;k > 0.

The conditions from equations (55) and (56) can now be used to determine �s. Let the radial

velocity component of �1n;m;l;k be !
n;m;l;k
r . Equations (55) and (56) are applied in equation (52) to

require

!n;m;l;k
r (rc)�

�s û
n;0;l;0
r (rc)

2ma0;0+ 2kb0;0
= 0 (57)

Hence,

�s =

�
2ma0;0+ 2kb0;0

�
!
n;m;l;k
r (rc)

û
n;0;l;0
r (rc)

(58)

The correction to the fundamentals is found by substitution back into equation (45).
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2.5. About the De�nition of the Amplitude

Changing the de�nitions of the amplitudes in equations (23) and (28) leaves the analysis

essentially unchanged. Operationally, only the quantity !
n;m;l;k
r (rc)=û

n;0;l;0
r (rc) in equation (58)

needs to be changed. All the numerical computations up to the calculation of �s remain the same as
long as the normalizations of the linear eigenfunctions in equations (24) and (29) are �xed. Hence,
one can study the inuence of di�erent amplitude de�nitions on the Landau coe�cients without
repeating the bulk of the computations. (The equations to be solved for higher order Landau
coe�cients depend on the lower order Landau coe�cients; so if higher order Landau coe�cients are
to be calculated, changing the amplitude de�nition would require recomputing many more solutions.)
In this subsection, we make some observations regarding how the Landau coe�cients vary with the
amplitude de�nition and how this information can guide the use of the weakly nonlinear theory.

All valid de�nitions of the amplitudes tend toward the same Landau coe�cients when the
linear growth rates a0;0 and b0;0 tend toward zero. One can see this by following the approach

of Watson (ref. 12) and expanding �1n;m;l;k in equation (48) in powers of 2(ma0;0+ kb0;0) so that

�1n;m;l;k=
1

2(ma0;0+ kb0;0)
�
1;�1
n;m;l;k

+ �
1;0
n;m;l;k

+ 2(ma0;0+ kb0;0)�
1;1
n;m;l;k

+ � � � (59)

By equating like powers of 2(ma0;0+ kb0;0), we �nd that at leading order, �1n;m;l;k(r) is proportional

to the linear eigenfunction q̂n;0;l;0(r). Herbert (ref. 15) uses this in his proof that the Landau
coe�cients obtained with his method are the same as those obtained with the Watson method
(ref. 12) as the neutral curve is approached. Varying the amplitude de�nition does not change the

ratio !
n;m;l;k
r (rc)=û

n;0;l;0
r (rc) in equation (58) if �1n;m;l;k(r) is proportional to q̂n;0;l;0(r). Hence, for

2(ma0;0+ kb0;0) ! 0, the Landau coe�cients become independent of amplitude de�nition.

When the quantity 2(ma0;0+ kb0;0) is not small, �
1

n;m;l;k(r) is not approximately proportional

to q̂n;0;l;0(r) and the Landau coe�cients can depend strongly on the amplitude de�nition. Local
amplitude de�nitions like the ones used above will generate Landau coe�cients that describe the
local behavior of the disturbance. Locally, parts of the disturbance can grow while other parts
can decay; hence, the Landau coe�cients corresponding to di�erent amplitude de�nitions may not
even have the same sign. As noted by Herbert (ref. 15) and others, the dependence of the Landau
coe�cients on the amplitude de�nition corresponds to a rearranging of the higher order terms in
the in�nite series. Large variations in the Landau coe�cients as the amplitude de�nition is changed
should warn the user of the theory that the higher order terms are likely to be important for the
speci�c problem considered.

Because integration tends to smooth rapid local changes, amplitude de�nitions that measure
global quantities are likely to be more reliable in predicting the overall behavior of the disturbance
in these cases. Therefore, one useful alternative amplitude de�nition is a slight variation of one
proposed by Herbert (ref. 15). Here,

A(t) =

�
�
�
�
�

R ro
r
i

q̂
�1;0;0;0(r) � ~q1;0(r) dr

R ro
r
i

q̂
�1;0;0;0(r) � q̂1;0;0;0(r) dr

�
�
�
�
�

(60)

with a corresponding de�nition for B(t). Note that q̂
�1;0;0;0 is just the complex conjugate of q̂1;0;0;0.

The expression for the Landau coe�cient is then changed from equation (58) to

�s =
�
2ma0;0+ 2kb0;0

�
R ro
r
i

q̂
�n;0;�l;0(r) � �

1

n;m;l;k(r) drR ro
r
i

q̂
�n;0;�l;0(r) � q̂n;0;l;0(r) dr

(61)

Note that the normalization of the linear eigenfunctions need not be changed.

Because DHZ and much of our early work used local amplitude de�nitions, comparisons will
be somewhat simpler if we use a local amplitude de�nition. Unless otherwise speci�ed, the results
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reported here used equations (23) and (28) for the amplitudes and equations (24) and (29) for the
eigenfunction normalizations.

2.6. Numerical Approach

All the equation systems are solved using a Chebyshev collocation procedure (ref. 20). The
left-hand-side operators for all the systems (except the mean-ow corrections) are generated with a
single subroutine. The operators for the mean-ow corrections need to ensure that only streamwise
velocity perturbations are nonzero. This was most easily done using a separate subroutine. The
right-hand-side vectors were su�ciently di�erent from each other that it was more convenient to use
MACSYMA to write individual subroutines for each of the equation systems. The two eigenproblems
are solved �rst with a global solver to obtain the eigenvalue spectrum. The eigenvectors associated
with the most unstable eigenvalue are obtained with a local iterative procedure. For � < 10�4 (which
is the regime studied here), a straightforward evaluation of the mean ow using 64-bit precision leads
to a substantial roundo� error; hence 128-bit precision was used for the calculation of the mean-
ow pro�le. For the stability calculations, we found that 65 collocation points across the channel
(including the end points) produced Landau coe�cients that agreed to at least 3 digits with those
obtained with 97 collocation points.

3. Results

3.1. Predictions of the Weakly Nonlinear Theory

We present some of our weakly nonlinear results in the context of nonlinear autonomous systems.
Recall that A measures the amplitude of the TS wave and B that of the Dean disturbance.
Equations (36) and (37) truncated at third order admit four possible steady-state solutions : the
trivial solution, �nite A with B = 0, �nite B with A = 0, and a combined state with �nite values of
both A and B. Each of these states is a critical point and may be classi�ed according to the local
behavior of the solutions in its vicinity. In the phase plane (B versus A), stable nodes are identi�ed
as those for which solution trajectories near the point converge to the node, unstable nodes are
critical points from which solution trajectories diverge, and saddle points are those points for which
a �nite number of trajectories converge to the point while all others diverge.

Several trajectories are illustrated in �gure 2 for a case where R = 6291:67, � = 2:189 � 10�5,
@ = 74257, and � = 4:51. These parameters were used extensively by Singer and Zang (ref. 13) in
their direct numerical simulations. An explicit fourth-order Runge- Kutta di�erencing scheme was
used to trace the subsequent trajectories. The �lled circles show the two stable equilibrium points
at (A = 3:8 � 10�3, B = 0) and (A = 0, B = 7:0 � 10�5), respectively. Trajectories initiated
near either of these points tend to converge to the respective nodes. The squares represent unstable
nodes and saddle points. Two initial conditions start close to the saddle point at (A = 2:4� 10�4,
B = 3:5�10�5) and go to di�erent stable equilibrium states. The ow is especially sensitive to small
changes near the saddle point. The unstable node at the origin is the end point of a semi-in�nite
curve that goes through the saddle point, and separates the region of attraction of the two stable
nodes. Quite di�erent behavior can be obtained depending upon the initial values of A and B.

A slightly di�erent scenario exists when we consider R = 5000, � = 2:179 � 10�5, @ = 105,
and � = 2:0. In �gure 3, pairs of trajectories with initial values of A di�ering by 0:001 are plotted
for various initial values of B. In many ways, the qualitative behavior seen here is similar to that
illustrated in �gure 2. The origin is an unstable node, there is a saddle point with nonzero A and
B, and there is a stable node with nonzero B but A = 0. A semi-in�nite curve extends from the
origin, goes through the saddle point, and separates the domain into a region that is attracted to the
stable node with (A = 0, B = 7:7�10�4) and a region in which A !1. This shows how important
the nonlinear interaction can be. Without a Dean disturbance, the TS wave has unbounded growth;
however, the inclusion of an additional disturbance at su�ciently large amplitude can completely
stabilize the otherwise growing TS wave.
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3.2. Comparison With Direct Numerical Simulation

Here we will compare the results of our weakly nonlinear analysis with those obtained by DNS.

The numerical simulation code (ref. 13) uses a curved channel variant of the method described
by Zang and Hussaini (ref. 21) with the nonlinear terms in skew-symmetric form (ref. 22). Table 2
reports the least stable eigenvalues (a0;0 � ig0;0) obtained with a spectral linear stability code and
the corresponding results of DNS with two di�erent time steps. (Note that in this context @ and
� refer to the azimuthal and axial wave numbers of the linear waves.) Sixty-�ve points across the
channel are used. Data from the DNS are taken after 100 time steps. Using a time step �t = 0:0001,
the complex growth rates di�er from those predicted by linear theory by less than 1 part in 104. In
the simulations reported below, we are primarily concerned with long-time trends and �nal steady-
state solutions; hence, the additional time advancement errors associated with the larger time step,
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�t = 0:01, are not expected to be important. The larger time step gives a maximum Courant (CFL)
number of 0.01, still well within the numerically stable regime. Additional details of code validation
studies in both the linear and nonlinear regimes are given by Singer and Zang (ref. 13).

Table 2. Comparison of Linear Growth Rates

[All values are multiplied by 104]

R @ � Linear stability DNS with �t = 0:01 DNS with �t = 0:0001

5 000 105 0 3:1189� 4236:9i 3:0736� 4241:8i 3:1185� 4236:9i

5 000 0 2.0 6:6331+ 0i 6:6336+ 0i 6:6335+ 0i

5 000 105 2.0 �138:2126� 16214:8i �138:2154� 16214:8i �138:2126� 16214:8i

10000 80000 0 86:4287� 2709:1i 86:4204� 2709:4i 86:4291� 2709:1i

10000 0 3.0 21:5591+ 0i 21:5599+ 0i 21:5599+ 0i

10000 80000 3.0 �90:6119� 12993:3i �90:6131� 12 993:3i �90:6119� 12 993:3i

Su�cient spatial resolution in the simulation can be ensured by using the guideline suggested by
Krist and Zang (ref. 23). They suggest that \grid re�nement is needed in any direction where the tail
of the energy spectrum reaches 10�8 of the low-frequency value." This guarantees that truncation
errors in the velocity will be less than 0.01 percent. Such detailed resolution is not necessary for
the purposes of these simulations. We have found that the high wave number end of the energy
spectrum could be as much as 10�4 of the low wave number value and still provide results similar to
those obtained when the Krist and Zang guideline was strictly followed. The relative insensitivity to
resolution is attributed to the rather minor role that small scales play in the present wave-interaction
problem.

We have simulated four cases with R = 6291:67, � = 2:189 � 10�5, @ = 74257, and � = 4:51.
The predictions of the weakly nonlinear theory for these cases were discussed above in conjunction
with �gure 2.

In the �rst case, only a Dean disturbance is included in the initial conditions. The weakly
nonlinear theory suggests that an equilibrium state with B = 7:0�10�5 develops corresponding to a
maximum streamwise velocity perturbation of 5.84 percent of U

�

. We have initiated the simulation
with the Dean linear eigenfunction having an initial strength, B = 6:95� 10�5. At t = 3:4845� 104,
the magnitude of the instantaneous growth rate has decreased by more than a factor of 100 and the
simulation is stopped with B = 6:7�10�5. In this case, the di�erence between the equilibrium state
predicted by the weakly nonlinear theory and that obtained from the DNS is less than 5 percent.

In the second case, only a TS wave with initial amplitude A = 3:5�10�3 is included. The weakly
nonlinear theory predicts a TS equilibrium state with A = 3:8 � 10�3, resulting in a maximum
streamwise disturbance of 1.94 percent of U

�

. The DNS is stopped at a time t = 1:1367 � 104

corresponding to over 480 TS wave periods. At this time, A = 4:0� 10�3. The di�erence between
theory and DNS is 5 percent.

The remaining two simulations with these parameters include both Dean and TS perturbations in
the initial conditions. In both cases we have initiated the Dean disturbances with B = 6:95� 10�5.
This value is slightly less than the equilibrium amplitude that we obtained in case 1.

When the initial strength of the TS disturbance is A = 2:94 � 10�4, the weakly nonlinear
phase-plane diagram in �gure 2 shows that the disturbances are in a region of attraction of the
saturated Dean vortex. Here the TS wave is expected to decay and the Dean vortex should grow
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to its equilibrium state. In �gure 4 we plot the amplitude of both the Dean and TS disturbances,
normalized by their respective amplitudes at time t = 0. The long-time prediction of the weakly
nonlinear theory agrees with the results of the DNS.
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Figure 4. Time evolution of TS and Dean disturbances for R = 6291:67; � = 2:189� 10
�5;@ = 74257, and � = 4:51.
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Figure 5. Time evolution of TS and Dean disturbances for R = 6291:67;� = 2:189� 10
�5;@ = 74257, and � = 4:51.

The initial TS disturbance has A = 2:7� 10
�3

; the initial Dean disturbance has B = 7:0� 10
�5

.

For a stronger TS disturbance (A = 2:94� 10�3), the disturbances are in a region of attraction
of the saturated TS wave. Figure 5 shows the amplitude histories for this case. Here it is the TS
wave that grows toward its equilibrium value and the Dean disturbance that experiences rapid decay.
Again the weakly nonlinear theory and the DNS agree.

Similar comparisons are made with R = 5000, � = 2:179 � 10�5, @ = 105, and � = 2:0. The
predictions of the weakly nonlinear theory for this set of parameters are summarized in �gure 3.
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A numerical simulation initiated with A = 2 � 10�3 and B = 0 con�rmed that the amplitude
A increased with increasing growth rate, at least until A = 4:8 � 10�3 when the simulation was
terminated.

A Dean vortex alone in this ow is predicted to reach an equilibrium state with B = 7:7� 10�4.
This value of B corresponds to a maximum streamwise velocity perturbation that is 62.4 percent of
the undisturbed laminar bulk velocity. Using this as an initial amplitude, an equilibrium state with
B = 4:3 � 10�4 is obtained in the direct numerical simulations. The di�erence between the DNS
result and that of the weakly nonlinear theory is not unexpected since the disturbance amplitudes
are so large. In addition, in this case the Landau coe�cients b1;0 and b0;1 are quite sensitive to the
amplitude de�nition. This warns us to temper our expectations from the theory for these parameter
values.

The �nal simulation performed used initial values of A and B as A = 2�10�3 and B = 6: 5�10�4.
In this case, the weakly nonlinear theory predicts that the TS wave will decay, leaving only a Dean
disturbance in the ow. The time evolutions of the TS and Dean disturbances are plotted in �gure 6
through t = 0:5 � 103. Though the simulation was terminated before a steady-state solution was
reached, the prediction of the weakly nonlinear theory is qualitatively supported. After the initial
transient, the TS wave decays rapidly. Considering the large amplitude disturbances in the ow, the
theory and the simulation agree well.
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Figure 6. Time evolution of TS and Dean disturbances for R = 5000; � = 2:179 � 10�5;@ = 105, and � = 2:0. The

initial TS disturbance has A = 2:0� 10�3; the initial Dean disturbance has B = 6:5� 10�4.

3.3. Comparison With Previous Theory

In this subsection we compare our Landau coe�cients with those of DHZ for two speci�c
cases for which normalized Landau coe�cients are available in table 1 of reference 10. Using our
nondimensionalizations, the Landau constants from the current theory and from the theory of DHZ
are shown in tables 3 and 4. The parameters of table 3 were studied extensively by Singer and
Zang (ref. 13) and are discussed above. The quantities a0;0 and b0;0 from DHZ were taken directly
from their linear eigenvalue solver, rather than by perturbing away from the neutral stability curve.
Except for the coe�cient b1;0, which represents the e�ect of the TS wave on the Dean disturbance,
the coe�cients show satisfactory agreement. For the cases considered here, the variation in b1;0

with various amplitude de�nitions is not large enough to explain the discrepancy. Singer and Zang
(ref. 13) suggested that a yet-unknown error in DHZ led to erroneous values of b1;0. Our work here
supports that suggestion.
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Table 3. Comparison of Landau Coe�cients for R = 6291:67; � = 2:189� 10�5;

@ = 74257, and � = 4:508

Theory a0;0 a1;0 a0;1 b0;0 b1;0 b0;1

Current . . . . . . 1:21� 10�4 �8:25 �95000 3:97� 10�5 �482 �7640

DHZ . . . . . . . 1:20� 10�4 �8.85 �101000 3:97� 10�5 1:23� 105 �8470

Table 4. Comparison of Landau Coe�cients for R = 4175;� = 2:179� 10�5;

@ = 86800, and � = 2:76

Theory a0;0 a1;0 a0;1 b0;0 b1;0 b0;1

Current . . . . . . 1:18� 10�5 3.97 �46600 7:66� 10�6 �233 �3340

DHZ . . . . . . . 1:33� 10�5 3.97 �46900 7:66� 10�6 1.44 �3390

4. Concluding Remarks

We have presented a weakly nonlinear theory to describe interactions between Tollmien-
Schlichting (TS) waves and Dean vortices in curved channel ow. The approach used to calculate the
Landau coe�cients is an extension of that developed by Herbert. This approach provides not only
the Landau coe�cients but also the shape change of the fundamental disturbances with amplitude.
We also discussed the e�ects of amplitude de�nition on the Landau coe�cients.

The analysis indicates that the resultant ow can be quite sensitive to the details of the initial
conditions. By the addition of a Dean vortex of relatively small amplitude , one can change the
long-time evolution of the ow dramatically. In one case we observed a switching of the equilibrium
solution from a �nite-amplitude TS wave with no Dean vortex to a �nite-amplitude Dean vortex
with no TS wave. A more dramatic change occurred in another case where a TS wave alone in the
ow would have grown ad in�nitum, but the presence of a Dean vortex caused the TS wave to decay
and the Dean vortex then evolved toward an equilibrium state.

Direct numerical simulations verify the predictions of the theory. When the amplitudes of the
disturbances are not too large, the direct numerical simulations and the weakly nonlinear theory
agree quite well. When the amplitudes of the disturbances are large (on the order of 60 percent of
the centerline velocity), the simulations and the theory still qualitatively agree.

A comparison of our results with those of Daudpota, Hall, and Zang (DHZ), who also developed
a similar weakly nonlinear theory, indicates that DHZ have an error in the computation of one of
their Landau coe�cients.

NASA Langley Research Center

Hampton, VA 23665-5225

January 9, 1992
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5. Appendix A

The Left-Hand-Side Operator Ln;l

The elements of the operator Ln;l are given as

Ln;l =

0
BBBB@
L1;1 L1;2 L1;3 L1;4

L2;1 L2;2 L2;3 L2;4

L3;1 L3;2 L3;3 L3;4

L4;1 L4;2 L4;3 L4;4

1
CCCCA

L1;1 = i@
1

r
U� +

1

R

 
l2�2+

n2@2+ 1

r2
�

1

r

d

dr
�

d2

dr2

!

L1;2 = �2
U�

r
+

2in@

r2R

L1;3 = 0

L1;4 =
d

dr

L2;1 =
dU�

dr
+

U�

r
�

2in@

r2R

L2;2 = i@
1

r
U� +

1

R

 
l2�2+

n2@2+ 1

r2
�

1

r

d

dr
�

d2

dr2

!

L2;3 = 0

L2;4 = i
n@

r

L3;1 = 0

L3;2 = 0

L3;3 = i@
1

r
U� +

1

R

 
l2�2+

n2@2

r2
�

1

r

d

dr
�

d2

dr2

!

L3;4 = il�

L4;1 =
1

r
+

d

dr

L4;2 = i
n@

r

L4;3 = il�

L4;4 = 0
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6. Appendix B

The Right-Hand-Side Vectors Rs

The elements of the right-hand-side vectors Rs are given explicitly as

Rs =

0
BBBB@

R1
s

R2
s

R3
s

R4
s

1
CCCCA

Equation system s = 5 corresponds to the TS harmonic. Its right-hand-side vector is given by

R1

5
= �(i@û

1;0;0;0
�

û1;0;0;0r )=r + (û
1;0;0;0
�

)2=r�
d

dr
(û1;0;0;0r ) û1;0;0;0r

R2

5 = �i@(û
1;0;0;0
�

)2=r � (û
1;0;0;0
�

û1;0;0;0r )=r�
d

dr
(û

1;0;0;0
�

) û1;0;0;0r

R3

5 = �(i@û
1;0;0;0
�

û1;0;0;0z )=r+ û1;0;0;0r

d

dr
(û1;0;0;0z )

R4

5 = 0

Equation system s = 6 corresponds to the Dean harmonic. Its right-hand-side vector is given by

R1

6 = �i�û0;0;1;0z û0;0;1;0r + (û
0;0;1;0
�

)2=r�
d

dr
(û0;0;1;0r ) û0;0;1;0r

R2

6 = �i�û
0;0;1;0
�

û0;0;1;0z � (û
0;0;1;0
�

û0;0;1;0r )=r�
d
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(û
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�

) û0;0;1;0r

R3

6 = �i�(û0;0;1;0z )2+ û0;0;1;0r

d

dr
(û0;0;1;0z )

R4

6
= 0

Equation system s = 7 corresponds to the product of the TS and Dean fundamentals. Its right-
hand-side vector is given by

R1

7 = �(i@û
0;0;1;0
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) û1;0;0;0r +
d

dr
(û
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Equation system s = 8 corresponds to the product of the TS fundamental and the complex
conjugate of the Dean fundamental. Its right-hand-side vector is given by
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û0;0;�1;0r )=r

�

�
d

dr
(û
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(û1;0;0;0z ) û0;0;�1;0r
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Equation system s = 9 corresponds to the self-correction of the TS fundamental. Its right-hand-
side vector is given by
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û�1;0;0;0r )=r

+ (2û
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d

dr
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d

dr
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9 = 0

Equation system s = 10 corresponds to the self-correction of the Dean fundamental. Its right-
hand-side vector is given by
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0;0;�1;0
�

û
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(û0;0;2;0r ) û0;0;�1;0r +
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0;0;�1;0
�
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(û

0;0;1;0
�
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(û0;0;1;0z ) û0;0;0;1r
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Equation system s = 11 corresponds to the correction of the TS fundamental by the Dean vortex.
Its right-hand-side vector is given by
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0;0;0;1
�
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(û1;0;0;0r ) û0;0;0;1r +
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+ i�(û0;0;�1;0
�
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û1;0;0;0r + û
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Equation system s = 12 corresponds to the correction of the Dean fundamental by the TS wave.
Its right-hand-side vector is given by
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1;0;1;0
�
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û
1;0;1;0
�

+ û
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û
0;1;0;0
�

) =r�

�
d

dr
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(û
�1;0;1;0
�
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û�1;0;0;0z )=r
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(û0;0;1;0z ) û0;1;0;0r +
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